Throwing a basketball

Aim:To show how impulse changes the movement of a thrown basketball.Subjects:1K10 (Dynamic Torque)
1K20 (Friction)
1N10 (Impulse and Thrust)

Diagram:

Equipment: • Basketball.

Throwing a basketball

Presentation: The lines on the basketball make it easy to see if the ball rotates yes or no.

Throw the basketball and observe that before hitting the ground it does not rotate, but that after rebound it rotates (see Figure 1A).

Also can be observed that after rebound the ball moves steeper than when it was in the throw (again: see Figure 1A).

Explanation: The ball has an impulse p_i , which can be looked at as consisting of a vertical component p_{ν} and a horizontal component p_h . When the ball hits the ground, p_{ν} is reversed (supposing complete elasticity). But p_h changes because the friction force F_{R_i} that acts during a short time (Δt), reduces the horizontal impulse by an amount of

$$\Delta \vec{p}_h = \int_{0}^{\Delta t} \vec{F}_R dt$$
. The combination of unchanged ρ_v and changed ρ_h makes that the ball

mounts steeper (Figure 1C).

That it rotates as well is due to the torque during contact with the ground, changing

its angular momentum by an amount of: $\Delta \vec{L} = \int_{0}^{\Delta} \vec{r} \times \vec{F} dt$.

Throwing a basketball

Sources:

• <u>American Journal of Physics</u>, 72-7(2004), pag. 875-883

- Nederlands Tijdschrift voor Natuurkunde, 70-10(2004), pag. 347
- Walker, J., Roundabout, the Physics of Rotation in the Everyday World, pag. 8-12

