Stable wheel

Aim:To show how a rolling bicycle wheel "organizes" its stability.Subjects:1Q60 (Rotational Stability)Diagram:Image: Image: Im

Equipment: • Small bicycle wheel; diam. = 40cm (or any other wheel or disc).

Stable wheel

Presentation:

.

Place the wheel upright on the floor. On release it falls down immediately.

 Then the wheel is released while turning. It rolls over the floor and remains upright for a much longer time. The second observation made is that it will follow a curve when it starts falling down. Also notice that the curve it makes, is into the direction of the "fallingdown" (see Figure 1).

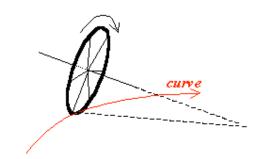
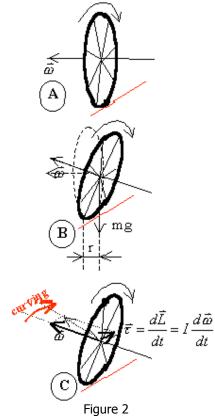



Figure 1

Explanation: Figure2A shows the wheel turning. The rotation is indicated by means of the vector $\underline{\omega}$. Due to some disturbance, the wheel inclines due to gravity: a torque ($\underline{\tau}$) is acting on the wheel (see Figure2B).

Due to this torque the direction of the vector $\underline{\omega}$ is changed: $\underline{\omega}$ is changed into the

direction of $\underline{\tau}$ (see figure2C), so the wheel will make a curve while rolling. This continues because the vectors $\underline{\omega}$ and $\underline{\tau}$ remain perpendicular to each other. Also can be seen now that the larger the inclination, the sharper the curve it will make since the vector \underline{r} increases, making $\underline{\tau}$ larger.

