
Pulling a slackened rope

Presentation: The two students stand each on a cart. Between them is a slackened rope. Slowly they increase the tension in the rope and at a certain moment both carts start moving towards each other. The rope slackens again, but both carts keep on moving. (Eventually friction will stop their movement.) When there is a clear massdifference between the two students, the difference in their respective speeds will be clearly observable. Explanation: The tension in the rope implies an impulse $F\Delta t$ to the cart + student. This impulse changes the momentum $p=m_{I}\Delta v_{I}$ of the cart + student. Applying Newton's second law we can say: $F\Delta t=m_{I}\Delta v_{I}$. When the initial velocity is zero, then m₁ will move with v₁ after the short impulse is over.

Applying 'conservation of linear momentum' to the whole system it is clear that the change of momentum of m_2 is $-\Delta p = m_2 \Delta v_2$. v_2 will be opposite to v_1 and when $m_2 > m_{1r}$, v_2 will be lower than v_1 .

Sources: Mansfield, M and O'Sullivan, C., Understanding physics, pag. 122-123

