Aim: To show and discuss the characteristics of a physical pendulum: reduced length, reversion pendulum and minimal period.

Subjects: 3A15 (Physical Pendula)

Diagram:

- **Equipment:** 2 meter sticks; I=1 m, with holes for reversed pendulum and minimum pendulum. (One of the sticks has extra holes at $s = 20$ cm and $s = 40$ cm (see Presentation 3.)
	- 2 axes in a ball-bearing.
	- 1 mathematical pendulum $(l=.667 \text{ m})$.
	- 1 meter stick for measurements.

Presentation: 1. The physical pendulum is suspended on an axis at hole A. A mathematical pendulum is swinging and given such a length that its period equals that of the physical pendulum. Its length is measured and it shows 67 cm.

- 2. Now the physical pendulum is suspended on the axis at hole B. Its period shows to be the same as both foregoing pendulums. The length of the pendulum below B is measured and it shows that this length equals the length of the mathematical pendulum!
- 3. The pendulum is suspended at hole D. Now T is shorter than in the foregoing demonstrations. Evidently there is a minimum between A and B. This can be demonstrated when both pendulums are suspended: one at D and the other in one of the extra holes on either side of D (between A and B). When both pendulums start together, after only a few oscillations it is clear that D is the faster pendulum.
- **Explanation:** 1. For a physical pendulum with mass m, oscillating around its suspension in point A, we can write for the period: $T = 2\pi \sqrt{\frac{I_A}{mgs}}$ (see Figure 1; I_A being

the moment of inertia, and s being the distance between the centre l_M of mass and the axis of rotation).

Figure 1

When the physical pendulum is a long uniform stick of length I_F its moment of inertia is $I_c = \frac{1}{12} m l_F^2$ and when it oscillates around a point A a distance $s = \frac{1}{2}l_f$ away from C, then $I_A = \frac{1}{12}ml^2 + m(\frac{1}{2}l)^2$, so: $I_A = \frac{1}{3}ml_F^2$. The period of the pendulum becomes: $rac{\frac{1}{3}ml_F^2}{\frac{1}{2}mgl_F} = 2\pi\sqrt{\frac{2}{3}}$ $T_F = 2\pi \sqrt{\frac{3}{1-\mu}F} = 2\pi \sqrt{\frac{2}{3}\frac{F_F}{F}}$ *F* $T_F = 2\pi \sqrt{\frac{\frac{1}{3}ml_F^2}{\frac{1}{2}mgl_F}} = 2\pi \sqrt{\frac{2}{3}\frac{l_F}{g}}$.

A mathematical pendulum of length l_M has a moment of inertia

$$
I_A = ml_M^2
$$
 and so: $T_M = 2\pi \sqrt{\frac{ml_M^2}{mgl_M}} = 2\pi \sqrt{\frac{l_M}{g}}$.

When we want $T_f = T_M$, then we need that $l_M = \frac{2}{3} l_F$. This l_M is called the reduced length of the physical pendulum.

2. When the physical pendulum is suspended in a point B, such that its remaining length is l_M , then again the period is the same! (See Figure 2)

$$
T = 2\pi \sqrt{\frac{I_B}{mgs}}
$$

$$
I_B = \frac{1}{12}ml_F^2 + ms^2
$$

 $s = l_M - \frac{1}{2}l_F$ and with $l_M = \frac{2}{3}l_F$, and $s = \frac{1}{6}l_F$, we find: $I_B = \frac{1}{12}ml_F^2 + \frac{1}{36}ml_F^2 = \frac{1}{9}ml_F^2$. Then the period will be: $rac{\frac{1}{9}ml_F^2}{\frac{1}{6}mgl_F} = 2\pi\sqrt{\frac{2}{3}}$ 2π _A $\frac{9}{4}$ $\frac{m v_F}{r} = 2\pi$ _A $\frac{2}{3}$ $\frac{v_F}{r}$ *F* $T = 2\pi \sqrt{\frac{\frac{1}{9}ml_F^2}{\frac{1}{6}mgl_F}} = 2\pi \sqrt{\frac{\frac{2}{3}l_F^2}{g}}$

So this pendulum has the same reduced length and the same period as the physical pendulum shown in the first presentation.

- 3. Between the suspension of A and B the presentation shows that a minimum period appears (suspension at D; see Diagram).
	- Now: $T = 2\pi \sqrt{\frac{I_D}{mgs}}$ (D being some point at *s* away from C.) $I_d = I_c + ms^2$ and with $I_c = \frac{1}{12} ml_F^2$ we find: $2\pi\sqrt{\frac{1}{12}ml_F^2 + ms^2} = \frac{2\pi}{\sqrt{12}}\sqrt{\frac{l_F}{12}+1}$ 12 $T = 2\pi \sqrt{\frac{1}{12}ml_F^2 + ms^2} = \sqrt{\frac{2\pi}{5}}\sqrt{\frac{l_F}{12}}$ *mgs* $\sqrt{g} \sqrt{12s}$ $=2\pi\sqrt{\frac{\frac{1}{12}ml_F^2+ms^2}{\frac{1}{12}mL_F^2}}=\frac{2\pi}{\sqrt{12}}\sqrt{\frac{l_F}{12}}+$ *T* being a minimum for $\frac{dT}{ds} = 0$, we find: $s = \frac{l_F}{\sqrt{12}}$ $s = \frac{l_F}{\sqrt{r}}$.

The length of the stick (l_F) is 1 meter, so s equals $\frac{1}{\sqrt{12}} = 0.289$ meters.

Remarks: • In order to give the physical pendulum a length of 1 meter and yet have a hole at the ends of this stick, we have triangularly shaped the ends (see Figure 3).

• The differences in T are small. With $l_F = 1$ meter, we find: T_A (= T_B) = 1.64 sec. And $T_D = 1.52$ sec. To obtain larger Ts a suspension closer to C is needed. Calculating: at $s = 12.5$ cm $(1/8l_f)$, $T = 1.78$ sec.; at $s = 8.3$ cm, $(1/12l_f)$, $T = 2.09$ sec; $s = 2.0$ cm, $T = 4.1$ sec; $s = 1.0$ cm, $T = 5.8$ sec. Of course at $s = 0$, $T =$ infinitive. • $T = 2\pi \sqrt{\frac{I_A}{mgs}}$ shows that physical pendulums of the same mass have

different periods due to their *I/s*-ratio. Comparing different pendulums can be done when comparing that ratio. For a long uniform stick this reduces to comparing the l_F /s-ratio

- **Sources:** Mansfield, M and O'Sullivan, C., Understanding physics, pag. 154-156 and 161-162
	- Meiners, Harry F., Physics demonstration experiments, part I, pag. 277-278
	- Roest, R., Inleiding Mechanica, pag. 168-169

