Aim: To show and discuss the characteristics of a physical pendulum: reduced length, reversion pendulum and minimal period.

Subjects: 3A15 (Physical Pendula)

Diagram:

Equipment:

•

- 2 meter sticks; I=1 m, with holes for reversed pendulum and minimum pendulum. (One of the sticks has extra holes at s = 20 cm and s = 40 cm (see Presentation 3.)
- 2 axes in a ball-bearing.
- 1 mathematical pendulum (I=.667 m).
- 1 meter stick for measurements.

Presentation:1. The physical pendulum is suspended on an axis at hole A. A mathematical
pendulum is swinging and given such a length that its period equals that of
the physical pendulum. Its length is measured and it shows 67 cm.

- 2. Now the physical pendulum is suspended on the axis at hole B. Its period shows to be the same as both foregoing pendulums. The length of the pendulum below B is measured and it shows that this length equals the length of the mathematical pendulum!
- 3. The pendulum is suspended at hole D. Now T is shorter than in the foregoing demonstrations. Evidently there is a minimum between A and B. This can be demonstrated when both pendulums are suspended: one at D and the other in one of the extra holes on either side of D (between A and B). When both pendulums start together, after only a few oscillations it is clear that D is the faster pendulum.
- **Explanation:** 1. For a physical pendulum with mass *m*, oscillating around its suspension in point A, we can write for the period: $T = 2\pi \sqrt{\frac{I_A}{mgs}}$ (see Figure 1; I_A being the moment of inertia, and *s* being the distance between the centre l_M of

mass and the axis of rotation).

Figure 1

When the physical pendulum is a long uniform stick of length l_F its moment of inertia is $I_c = \frac{1}{12}ml_F^2$ and when it oscillates around a point A a distance $s = \frac{1}{2}l_f$ away from C, then $I_A = \frac{1}{12}ml^2 + m(\frac{1}{2}l)^2$, so: $I_A = \frac{1}{3}ml_F^2$. The period of the pendulum becomes: $T_F = 2\pi \sqrt{\frac{\frac{1}{3}ml_F^2}{\frac{1}{2}mgl_F}} = 2\pi \sqrt{\frac{2}{3}\frac{l_F}{g}}$.

A mathematical pendulum of length l_{M} has a moment of inertia

$$I_A = m l_M^2$$
 and so: $T_M = 2\pi \sqrt{\frac{m l_M^2}{m g l_M}} = 2\pi \sqrt{\frac{l_M}{g}}$

When we want $T_F = T_M$, then we need that $l_M = \frac{2}{3}l_F$. This l_M is called the <u>reduced length</u> of the physical pendulum.

2. When the physical pendulum is suspended in a point B, such that its remaining length is l_{M} , then again the period is the same! (See Figure 2)

$$T = 2\pi \sqrt{\frac{I_B}{mgs}}$$
$$I_B = \frac{1}{12}ml_F^2 + ms^2$$

 $s = l_{M} - \frac{1}{2}l_{F}$ and with $l_{M} = \frac{2}{3}l_{F}$, and $s = \frac{1}{6}l_{F}$, we find: $I_{B} = \frac{1}{12}ml_{F}^{2} + \frac{1}{36}ml_{F}^{2} = \frac{1}{9}ml_{F}^{2}$. Then the period will be: $T = 2\pi \sqrt{\frac{\frac{1}{9}ml_{F}^{2}}{\frac{1}{6}mgl_{F}}} = 2\pi \sqrt{\frac{2}{3}\frac{l_{F}}{g}}$

So this pendulum has the same reduced length and the same period as the physical pendulum shown in the first presentation.

3. Between the suspension of A and B the presentation shows that a minimum period appears (suspension at D; see Diagram).

Now: $T = 2\pi \sqrt{\frac{I_D}{mgs}}$ (D being some point at *s* away from C.) $I_d = I_c + ms^2$ and with $I_c = \frac{1}{12}ml_F^2$ we find: $T = 2\pi \sqrt{\frac{\frac{1}{12}ml_F^2 + ms^2}{mgs}} = \frac{2\pi}{\sqrt{\frac{1}{2}}\sqrt{\frac{l_F}{12s} + 1}}$ *T* being a minimum for $\frac{dT}{ds} = 0$, we find: $s = \frac{l_F}{\sqrt{12}}$.

The length of the stick (l_F) is 1 meter, so *s* equals $\frac{1}{\sqrt{12}} = 0.289$ meters.

In order to give the physical pendulum a length of 1 meter and yet have a hole at the ends of this stick, we have triangularly shaped the ends (see Figure 3).

The differences in *T* are small. With *I_F* = 1 meter, we find: *T_A* (= *T_B*) = 1.64 sec. And *T_D* = 1.52 sec. To obtain larger *T*'s a suspension closer to C is needed. Calculating: at *s* = 12.5 cm (1/8*I_F*), *T* = 1.78 sec.; at *s* = 8.3 cm, (1/12*I_F*), *T* = 2.09 sec; *s* = 2.0 cm, *T* = 4.1 sec; *s* = 1.0 cm, *T* = 5.8 sec. Of course at *s* = 0, *T* = *infinitive*. *T* = 2*π* √ *I_A* shows that physical pendulums of the same mass have

different periods due to their *I/s*-ratio. Comparing different pendulums can be done when comparing that ratio. For a long uniform stick this reduces to comparing the I_{F}/s -ratio

Sources:

- <u>Mansfield, M and O'Sullivan, C., Understanding physics</u>, pag. 154-156 and 161-162
- Meiners, Harry F., Physics demonstration experiments, part I, pag. 277-278
- Roest, R., Inleiding Mechanica, pag. 168-169

