Negative temperature coefficient

Aim:To show how the resistance of a semiconductor (P-Ge) depends on temperature.Subjects:5D20 (Resistivity and Temperature)Diagram:Image: Image: Im

Equipment:

- Bar of P-GePower supply
- Current meter with large display
- Gasflame

Negative temperature coefficient

- Presentation: Set the Ammeter at a 1A-scale. The voltage of the power supply is raised until a current of about 0.05 A flows in the circuit. The bar of P-Ge is heated by the gasflame and soon the current rises to a much higher value. After a short time of heating the gasflame can be removed and the current continues to rise, faster and faster, only limited by the powersupply.
- Explanation: The resistance of a semiconductor drops with temperature because at a higher temperature there are more free charge-carriers in it.

The current flowing in the material heats it up: $P_{el} = \frac{V^2}{R}$ The heat leaving the piece of

material is proportional to ΔT : $P_{out} \propto \Delta T$ (Newton cooling). When $P_{out}=P_{el}$ there will be thermal equilibrium and the temperature is constant. Reaching such an equilibrium takes some time.

In this demonstration R lowers due to a rise in temperature and so P_{el} rises due to a rise in temperature. When this rise is faster than the rise of P_{out} an ever faster rising of ΔT (like an avalanche) will result.

